The chromatic index of multigraphs of order at most 10

نویسندگان

  • Michael Plantholt
  • Shailesh K. Tipnis
چکیده

The maximum of the maximum degree and the 'odd set quotients' provides a well-known lower bound 4)(G) for the chromatic index of a multigraph G. Plantholt proved that if G is a multigraph of order at most 8, its chromatic index equals qS(G) and that if G is a multigraph of order 10, the chromatic index of G cannot exceed qS(G) + 1. We identify those multigraphs G of order 9 and 10 whose chromatic index equals ~b(G)+ 1, thus completing the determination of the chromatic index of all multigraphs of order at most 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic-index critical multigraphs of order 20

A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum d...

متن کامل

Some maximum multigraphs and adge/vertex distance colourings

Shannon–Vizing–type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree ∆(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d–index and chromatic d–number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their gro...

متن کامل

Asymptotics of the total chromatic number for multigraphs

For loopless multigraphs, the total chromatic number is asymptotically its fractional counterpart as the latter invariant tends to infinity. The proof of this is based on a recent theorem of Kahn establishing the analogous asymptotic behaviour of the list-chromatic index for multigraphs. The total colouring conjecture, proposed independently by Behzad [1] and Vizing [11], asserts that the total...

متن کامل

A sublinear bound on the chromatic index of multigraphs

The integer round-up 4(G) of the fractional chromatic index yields the standard lower bound for the chromatic index of a multigraph G. We show that if G has even order n, then the chromatic index exceeds 4(G) by at most max{log,,, n, 1 + n/30}. More generally, we show that for any real b, 2/3 <b < 1, the chromatic index of G exceeds 4(G) by at most max{log,,b n, 1 +n(l b)/lO}. This is used to s...

متن کامل

Regular Multigraphs of High Degree Are 1-factorizable

Chetwynd and Hilton showed that any regular simple graph with even order n and maximum degree at least \n has chromatic index equal to its maximum degree. We show how to extend this result to general multigraphs, including those of odd order. This also verifies a special case of conjectures by Goldberg and Seymour.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1997